一、什么是方差,极差,公式是什么?
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
极差是指一组测量值内最大值与 最小值之差,又称范围误差或 全距,以R表示。它是标志值变动的最大范围,它是测定标志变动的最简单的指标。
方差的意义:
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的 算术平方根叫做样本 标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
极差的用途与意义:
在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体 标准偏差的有偏 估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在 数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个 极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。
二、大数据都需要什么技术
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
三、计算思维的计算思维
操作模式 计算思维建立在计算过程的能力和限制之上,由人由机器执行。计算方法和模型使我们敢于去处理那些原本无法由任何个人独自完成的问题求解和系统设计。计算思维直面机器智能的不解之谜:什么人类比计算机做得好?什么计算机比人类做得好?最基本的问题是:什么是可计算的?迄今为止我们对这些问题仍是一知半解。
计算思维用途 计算思维是每个人的基本技能,不仅仅属于计算机科学家。我们应当使每个孩子在培养解析能力时不仅掌握阅读、写作和算术(Reading, wRiting, and aRithmetic——3R),还要学会计算思维。正如印刷出版促进了3R的普及,计算和计算机也以类似的正反馈促进了计算思维的传播。
计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为。它包括了涵盖计算机科学之广度的一系列思维活动。当我们必须求解一个特定的问题时,首先会问:解决这个问题有多么困难?怎样才是最佳的解决方法?计算机科学根据坚实的理论基础来准确地回答这些问题。表述问题的难度就是工具的基本能力,必须考虑的因素包括机器的指令系统、资源约束和操作环境。
为了有效地求解一个问题,我们可能要进一步问:一个近似解是否就够了,是否可以利用一下随机化,以及是否允许误报(false positive)和漏报(false negative)。计算思维就是通过约简、嵌入、转化和仿真等方法,把一个看来困难的问题重新阐释成一个我们知道怎样解决的问题。
计算思维是一种递归思维 它是并行处理。它是把代码译成数据又把数据译成代码。它是由广义量纲分析进行的类型检查。对于别名或赋予人与物多个名字的做法,它既知道其益处又了解其害处。对于间接寻址和程序调用的方法,它既知道其威力又了解其代价。它评价一个程序时,不仅仅根据其准确性和效率,还有美学的考量,而对于系统的设计,还考虑简洁和优雅。
抽象和分解 来迎接庞杂的任务或者设计巨大复杂的系统。它是关注的分离(SOC方法)。它是选择合适的方式去陈述一个问题,或者是选择合适的方式对一个问题的相关方面建模使其易于处理。它是利用不变量简明扼要且表述性地刻画系统的行为。它使我们在不必理解每一个细节的情况下就能够安全地使用、调整和影响一个大型复杂系统的信息。它就是为预期的未来应用而进行的预取和缓存。计算思维是按照预防、保护及通过冗余、容错、纠错的方式从最坏情形恢复的一种思维。它称堵塞为“死锁”,称约定为“界面”。计算思维就是学习在同步相互会合时如何避免“竞争条件”(亦称“竞态条件”)的情形。
计算思维利用启发式推理来寻求解答,就是在不确定情况下的规划、学习和调度。它就是搜索、搜索、再搜索,结果是一系列的网页,一个赢得游戏的策略,或者一个反例。计算思维利用海量数据来加快计算,在时间和空间之间,在处理能力和存储容量之间进行权衡。
考虑下面日常生活中的事例:当你女儿早晨去学校时,她把当天需要的东西放进背包,这就是预置和缓存;当你儿子弄丢他的手套时,你建议他沿走过的路寻找,这就是回推;在什么时候停止租用滑雪板而为自己买一付呢?这就是在线算法;在超市付帐时,你应当去排哪个队呢?这就是多服务器系统的性能模型;为什么停电时你的电话仍然可用?这就是失败的无关性和设计的冗余性;完全自动的大众图灵测试如何区分计算机和人类,即CAPTCHA[注1]程序是怎样鉴别人类的?这就是充分利用求解人工智能难题之艰难来挫败计算代理程序。
计算思维将渗透到我们每个人的生活之中,到那时诸如算法和前提条件这些词汇将成为每个人日常语言的一部分,对“非确定论”和“垃圾收集”这些词的理解会和计算机科学里的含义驱近,而树已常常被倒过来画了。
我们已见证了计算思维在其他学科中的影响。例如,机器学习已经改变了统计学。就数学尺度和维数而言,统计学习用于各类问题的规模仅在几年前还是不可想象的。各种组织的统计部门都聘请了计算机科学家。计算机学院(系)正在与已有或新开设的统计学系联姻。
计算机学家们对生物科学越来越感兴趣,因为他们坚信生物学家能够从计算思维中获益。计算机科学对生物学的贡献决不限于其能够在海量序列数据中搜索寻找模式规律的本领。最终希望是数据结构和算法(我们自身的计算抽象和方法)能够以其体现自身功能的方式来表示蛋白质的结构。计算生物学正在改变着生物学家的思考方式。类似地,计算博弈理论正改变着经济学家的思考方式,纳米计算改变着化学家的思考方式,量子计算改变着物理学家的思考方式。
这种思维将成为每一个人的技能组合成分,而不仅仅限于科学家。普适计算之于今天就如计算思维之于明天。普适计算是已成为今日现实的昨日之梦,而计算思维就是明日现实。
版权声明:部分内容由互联网用户自发贡献,如有侵权/违规,请联系删除
本平台仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
本文链接地址:/dsj/213727.html