债务人赖账不还怎么办
一、债务人赖账不还怎么办 起诉,强制执行。大额债务可咨询当地债事生活服务行,不碰钱,不碰帐、不诉讼、不涉黑,大数据匹配债务链,快速解决债务问题,直接、有效,事后收费
楼上的说的都是一些小数的,我再补充一些:
农民版:
今年小麦增产了二成啊!(二成=20%)
工业版:
今年的工业比去年低了一成,哎…………(一成=10%)
饮食版:
我的面条烧八分熟。(八分=80%)
搞笑版:
“youshui”这个四级经理家有五口人,家里买了一头猪,人口增加了二成。(二成=20%)
……………………………………
牛排要七分熟。呵呵 就是70%啦
表示一个数是另一个数的百分之几的数.百分数也叫做百分率或百分比.百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示.如 写为41%,1%就是 .由于百分数的分母都是100,也就是都以1%作单位,便于比较,因此,百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用.特别是在进行调查统计、分析比较时,经常要用到百分数.
百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入.例如,一年级有学生100人,其中女同学有47人,女同学即占全年级人数的百分之四十七,写作47%.又如,二年级有学生200人,其中女同学有100人,女同学即占全年级人数的百分之五十( ).在这两个例子中,两个年级的人数都是“标准量”,而女同学的人数为“比较量”.在百分数应用题的教学中要抓住 =百分率(百分数)这一数量关系式进行分析.
百分数应用题有下列三种计算问题:①求一个数是另一个数的百分之几,例:求45是225的百分之几,即 =20%.②求一个数的百分之几是多少.例:求 2.2的 75%是多少.即 2.2×75%=1.65.③已知一个数的百分之几是多少,求这个数.例:已知一个数的75%是165,求这个数.即165÷75%=220
班数学期中测试的优秀率是50%;
我校六年级人数约占全校人数的15%;
我校有98%的教师拥有大专学历;
这件毛衣中,羊毛占85%,化纤占15%.
空气中氧气体积约占20%
我国领土面积约占全世界陆地(南极洲除外)面积的7.1%
目前我国城市人口占总人口的32%
(1)小麦的出粉率 80%
(2)产品的合格率 90%
(3)发芽率 70%
- - 红包最独特!
人理解,说简单点: 一组数据中如果有特别大的数或特别小的数时,一般用中位数 一组数据比较多(20个以上),范围比较集中,一般用众数 其余情况一般还是平均数比较精确 一、联系与区别: 1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。 2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。另外,因中位数在一组数据的数值排序中处中间的位置, 3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向. 二、平均数、中位数和众数它们都有各自的的优缺点. 平均数:(1)需要全组所有数据来计算; (2)易受数据中极端数值的影响. 中位数:(1)仅需把数据按顺序排列后即可确定; (2)不易受数据中极端数值的影响. 众数:(1)通过计数得到; (2)不易受数据中极端数值的影响 关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。 ⒈众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 ⒉众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 4.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 5.众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 6.中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。 7.平均数、中位数与众数的异同: ⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响; ⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。 8.统计量。 平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。 9.举手表决法。 在生活中,往往会有由多数人来从众多答案中选择一个的情形,一般都利用“举手表决”方式来解决问题。即在统计出所有提议及相应票数的情况下,看各票数的众数是否超过总票数的一半,如果众数超过了总票数的一半,选择的最终答案就是这个众数。如果出现了双众数(两个众数),可对这两个众数采用抓阄、抽签或投掷硬币等办法选出最终的答案。 10.平均数、众数和中位数三种统计数据在生活中的意义。 平均数说明的是整体的平均水平;众数说明的是生活中的多数情况;中位数说明的是生活中的中等水平。 11.如何通过平均数、众数和中位数对表面现象到背景材料进行客观分析。 在个别的数据过大或过小的情况下,“平均数”代表数据整体水平是有局限性的,也就是说个别极端数据是会对平均数产生较大的影响的,而对众数和中位数的影响则不那么明显。所以,这时要用众数活中位数来代表整体数据更合适。即:如果在一组相差较大的数据中,用中位数或众数作为表示这组数据特征的统计量往往更有意义
版权声明:部分内容由互联网用户自发贡献,如有侵权/违规,请联系删除
本平台仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
本文链接地址:/dsj/215801.html